##
* *Reflection: Student Ownership
Momentum - Section 2: Predicting Results of One-Dimensional Collisions

We often talk about being "student-centered" but how often do we really step out of the way and allow students to explore? Today, my plan had been to demonstrate - very carefully so as to elicit the most critical ideas - each of the four collision scenarios that my students had just considered. In an impromptu moment, I decided to let students try to replicate those scenarios. Many terrific things happened.

First, students were quite alert to the difficulty of matching velocities in the cases where that was a requirement. It was a physical reaction - they needed to coordinate with one another. Better yet, they realized, perhaps just one person pushing gliders toward one another would be the best strategy. I don't think they would have gotten that idea had I just told them or showed them . . . Doing it made it very real, very quickly.

Second, students substituted their "fast-twitch" muscles for my more methodical approach. In other words, they did lots of trials in quick succession and built up an intuition about the gliders in a short time. Instead of seeing some lesson slowly unfold, they made rapid-fire observations and iterations which led, ultimately, to them stumbling upon the concept of the immovable object.

The lesson that was absorbed was different than the one I had planned. But, I think, it was better and it was more engaging. I wish I could say that it had been my plan all along!

*Stepping Out of the Way*

*Student Ownership: Stepping Out of the Way*

# Momentum

Lesson 10 of 11

## Objective: Students will examine one-dimensional collision problems and use the principle of momentum to predict outcomes of those collisions.

#### Warmup

*25 min*

Today we are beginning a one-day study of momentum - our last new topic for the school year. having students using the concept of momentum - and the fact that the momentum of system is a conserved quantity - is the major idea behind the NGSS Performance Expectation HS-PS2-2. Before diving into that today, I present my students with a conservation of energey warmup problem that reminds them of our most recent work and allows us to practice yet another Performance Expectation, HS-PS2-1.

The problem is a roller coaster, of sorts. Students compute the total distance traveled by the cart based on energy considerations, then represent the "energy budget" at a specific point identified as 90% of the total distance traveled. They work alone or in small groups and I freely provide assistance to any students who seek it. About one-third of the students need a reminder that we have an equation for the total energy for objects in motion that is a sum of the potential, kinetic, and thermal energies (due to friction).

After about seven or eight minutes, I send one of my students to the board to show the bar graphs he generated for the final question. Once he is done, I give students just another minute or so to wrap up before sharing solutions to both questions.

The first part is a computation based on the total energy that can be computed at the top of the roller coaster. After elaborating on that, I show the student solution to the bar graph question. As I do, he points out an error and we quickly change the numbers on his bar graph to reflect his updated thoughts.

*expand content*

I share with my students that everything we've done this year can be explained as a result of carefully considering energy. Today, that streak - nearly an entire year of Physics - comes to an end as the physics of collisions will need some other understanding to be explained.

I reveal four collision scenarios and ask students to privately, quietly, sketch in their notebooks their thoughts about what will happen in each case after the collision. They take 1-2 minutes to do so, then I ask them to turn & talk with a neighbor to share their thinking.

After that, we have a conversation where students explain how they see the post-collision outcomes and I ask, after each answer is volunteered, whether others saw it the same way. Every scenario gets some support and I share with my students that there are, indeed, many very reasonable outcomes that depend upon the exact nature of the collision moment - the types of surfaces, the contact surface area, and the elasticity of each surface are all characteristics that are not evident in any of these scenarios.

After soliciting ideas about all four scenarios, I bring students to the back of the room to test their thoughts with an air track. We have masses ("gliders") that are nearly the same, a frictionless surface, and the ability to adjust the velocities of the gliders. I have students volunteer to replicate the four scenarios and we look for insights into the nature of collisions.

Near the end of this time, students start to naturally explore the idea of an infinite mass - they press down on one glider to see the impact of a moving glider when it strikes one that is immovable. They have, without prompting, recreated the Physics-famous idea of "an immovable object!"

After exploring these situations, I have students return to the front of the room for some formal notes. We need to take our observations and out intuitions and see how they stand up to the reality of momentum calculations.

*expand content*

#### Formalized Notes on Momentum

*25 min*

Having speculated on the physics of collisions and having explored these collisions on an air track, students are ready to see the formal rules that account for collisions. I spend the remainder of class delivering direct instruction, with students taking notes in their notebooks. For the first time all day, I introduce the concept of "momentum," which I describe as a "quantitative way to measure inertia - the tendency to keep doing whatever an object is doing."

I reveal notes about momentum one section at a time. First, I simply define momentum and note how close it is to the concept of kinetic energy. Unlike kinetic energy, however, momentum, like velocity, is a vector and has a sense of direction. Momentum, therefore, can be cancelled by a momentum with an opposing sign.

Then I reveal the idea of the conservation of momentum. I show the vector sum of "n" particles as being a constant, then show an image of three particles in two dimensions. Though the individual momenta can change over time, the total momentum ("ptot" in the diagram) must be constant, despite the individual changes.

Finally, I show how that conservation principle can be applied to the simplest collision: two objects in one dimension. To close the loop, I show how this idea can be applied to one of our scenarios: the case of the glued objects heading toward one another with the same speed. The momenta on the left-hand side of the equation (pre-collision quantities) sum to zero, implying that, when the objects stick together because of the glue, they must not be moving.

Though time runs out today, this instruction provides the background for students to practice the collision problems that are featured on the final exam and the associated preview questions. Students have about one week to prepare for the final. The time in class between now and then is used to review for the exam in a very open-ended format.

*expand content*

##### Similar Lessons

###### LAB: Is This Reaction Endothermic or Exothermic?

*Favorites(13)*

*Resources(15)*

Environment: Urban

Environment: Suburban

###### The Energy of Phase Changes

*Favorites(9)*

*Resources(35)*

Environment: Urban

- LESSON 1: Exploring Newton's Second Law
- LESSON 2: Decoding Newton's Second Law
- LESSON 3: Gravity & Friction
- LESSON 4: Rethinking Friction
- LESSON 5: Motion & Energy - Day 1
- LESSON 6: Introduction to Forces on an Inclined Plane
- LESSON 7: Virtual Exploration of Forces on an Inclined Plane
- LESSON 8: Virtual Exploration of Inclined Plane Forces, Day 2
- LESSON 9: Motion & Energy - Day 2
- LESSON 10: Momentum
- LESSON 11: Physics Final Exam