##
* *Reflection: Flexibility
Finding the Distance Between Integers On a Number Line - Section 1: Introduction

The problems in the introduction are presented to make sure students can use a number line to count distances between points. (If you see your students get this, I wouldn't spend too much time on any of these problems. I would let them jump straight to the problem solving section.). Quite a few of my students had a unit of integer operations at the end of their sixth grade year. They wanted to ignore the number line and just solve the subtraction problems. I guess that is okay, but I noticed that many of them were making mistakes with their integer subtraction. I had to keep reminding them to check their answers using the number line.

Also think of this introduction as something that could be "re-mixed". You may want to make a quick game out of finding the distances. There may be no need to provide students with anything other than a number line and then ask students find the distances by posting them on the board. A high paced game makes this a lot more fun than how it is presented in the resource.

Also, if you students quickly grasp the concept, move on to the problem solving section!

*The Introduction Is a Remixable Template*

*Flexibility: The Introduction Is a Remixable Template*

# Finding the Distance Between Integers On a Number Line

Lesson 2 of 27

## Objective: SWBAT determine the distance between two integers on a number line and express the distance as the absolute value of their difference

## Big Idea: Number line models allow students to easily find distances between points and relate the distance as the absolute value of their difference.

*45 minutes*

#### Introduction

*5 min*

The purpose of the introduction is to make sure students recall the meaning of absolute value as the distance from a number to 0 on a number line. Distances are always positive. I will display the blank number lines on the SmartBoard. I will **cold call **students to determine the absolute value of various points that I will mark on the number lines. For the first few problems, I will show the line segment from 0 to the number over the number line. I will also make sure to label the absolute value notation | | for each number. I know that students often confuse this symbol with parentheses so I will make sure they note the differences. As students see these values represented with the absolute value symbol they are engagin in **MP2** as they see a distance represented as using symbols such as | -7 | = the distance 7. To include a bit of **MP3** and **MP6**, I will ask some students to explain how they know their answers are valid. While this is very basic, it will help students get into the habit of using precise language to explain and justify their reasoning.

#### Resources

*expand content*

#### Distances on Number Lines

*15 min*

I have presented students with 24 distance problems to solve using a given number line. Students should be able to twork with their partners without much help from the teacher. If students are having difficulty, I will first make sure that they are able to identify the location of the two points. Then, I will watch them count the distances. Students often make mistakes when counting distances. For example, they will say the distance between 1 and 3 is 3 units because they will count 1. To mitigate the chance of this happening, I may tell students to count the spaces between the tick marks of the number line. Or when I see this I may ask them to count how many steps I am taking towards them. They will see that it does not make since to start counting steps until I have made the first step. Each distance is represented using the absolute value symbols so students should see that there are two ways to write the distance as the absolute value of their difference. Again this presentation is here so students see that the symbols represent the distance (**MP2**).I am teaching this lesson before we learn to add or subtract integers, so I may allow my students to use calculators to verify that their counting on the number line matches the calculations for each problem (**MP5**). For each group of problems, I have included a couple problems with numbers that do not explicitly appear on the number line or numbers that are inbetween tick marks. I expect to hear students say "The number is not there." Problem e, has a negative 13. I will ask them to tell me where -13 is in relationship to -11 (the last visible number on the left of the numberline). Problem k, has tick mark intervals in multiples of 5, but it asks students to place -46. I will ask them to point where they think -46 is based on the values given. If they struggle, I may ask them to identify where an easier number is like +7.

At the end of this section, we will quickly review answers. I will then ask students if they see a shortcut or easier way to find the distance between a positive and negative number wihtout counting each tick mark. This is to see if they see the structure (**MP7**) that the sum of a negative numbers' abs value and the positive numbers' abs value is also their distance.

This goes with pages 1-2 of the resource:

FindingTheDistanceBetweenIntegersOnANumberLine_Module.docx

*expand content*

#### Problem Solving

*20 min*

The problem solving section is on pages 3-4 of the resource:

FindingTheDistanceBetweenIntegersOnANumberLine_Module.docx

Now students apply what they know in a "real-world" problem solving context. In problem 1, students will have to figure out the appropriate scale for their number line (**MP6**). Students should resolve issues with their partners, but if stuck I may ask questions like: "How far is the scuba diver/hang glider from sea level? Is the scuba diver/hang glider above or below sea level?" Part C asks students to write two different expressions to represent the distance. My intention is for them to write these as the abs value of their distance, but it is also great if they choose to write the distance as the sum of the abs values of each altitude.

Problem 2 is simlar, except that there are more points to find. Students are asked to find the distances between every house. Here is a small opportunity for students to make sense of a problem (**MP1**) as they must find a method to make sure they find all 6 distances.

The extension is not any more difficult than the previous problems, it may even be easier, but it puts the distances in the context of the coordinate plane. It provides an opportunity for reviewing how to graph in all four quadrants of the the coordinate plane.

*expand content*

#### Exit Ticket

*5 min*

The exit ticket is a similar problem to the two problems in the problem solving section. In fact, it is most similar to the first problem. Students work on this independently, but it is okay for them to refer to any of their class work as an aid.

*expand content*

These activity are excellent. How can I add to these activity for a double period class?

| 2 years ago | Reply

This is a fantastic lesson. I had my lesson plan and was struggling to find problems with number lines and making my own worksheet was tough! As a first year teacher it is so great to be able to pass on the work of more experienced teachers as I find my place in the world of education. I have written "adapted from Grant Harris" at the bottom of the handout to give appropriate credit. I am planning on using the handouts from #2 and #3 of your lesson. Thanks.

Ms. Laura Kirschenbaum

Bronx, NY

| 2 years ago | Reply*expand comments*

##### Similar Lessons

###### Subtracting Integers - How does subtraction relate to addition?

*Favorites(35)*

*Resources(16)*

Environment: Suburban

###### Relative Error Spiral Lesson

*Favorites(0)*

*Resources(18)*

Environment: Urban

Environment: Urban

- LESSON 1: Fractions as Quotients - Using Long Division to Convert a Fraction to a Decimal
- LESSON 2: Finding the Distance Between Integers On a Number Line
- LESSON 3: Where Do We Go From Here? Adding Integers on the Number Line
- LESSON 4: What is the Sign of the Sum?
- LESSON 5: Algorithms for Adding Integers
- LESSON 6: How Addition and Subtraction are Related (Part 1 of 3)
- LESSON 7: Subtracting for More or Less. Subtracting Integers on a Number Line
- LESSON 8: How Addition and Subtraction are Related (Part 2 of 3)
- LESSON 9: How Addition and Subtraction are Related (Part 3 of 3)
- LESSON 10: Algorithms for Subtracting Integers
- LESSON 11: Assessment - Fluency and Concepts of Integer Sums and Differences
- LESSON 12: Integer Product Signs - Using Counters to Discover Signs of Products
- LESSON 13: Integer Quotients
- LESSON 14: Expand Expressions Using the Distributive Property
- LESSON 15: Integers Assessment
- LESSON 16: Finding the Distance Between Signed Decimals on a Number Line
- LESSON 17: Adding and Subtracting Positive and Negative Decimals on a Numberline
- LESSON 18: Adding and Subtracting Signed Decimals Using a Procedure
- LESSON 19: Multiplying Signed Decimals
- LESSON 20: Dividing Signed Decimals
- LESSON 21: Finding the Distance Between Signed Fractions on a Number Line
- LESSON 22: Adding and Subtracting Positive and Negative Fractions on a Numberline
- LESSON 23: Adding and Subtracting Positive and Negative Fractions Using Counters
- LESSON 24: Adding and Subtracting Signed Fractions Using a Procedure
- LESSON 25: Multiplying Signed Fractions
- LESSON 26: Dividing Signed Fractions
- LESSON 27: Rational Numbers Operations - Final Unit Assessment