##
* *Reflection: Relevance
Inconceivable! The Origins of Imaginary Numbers - Section 1: Discussion: What's an Imaginary Number?

Today, one of my seniors came into class looking a little shaken. As we chatted before class, she said that she'd been reading and discussing A Brave New World in one of her classes and the works of Friedrich Nietzsche (of "God is dead" fame) in another. She was describing the feeling of disillusionment she got from both books and how after reading them she always felt like she needed to have her faith in humanity restored because the ideas put forth are so dark and distressing.

As she left class, she turned to me with a wry smile and said, "Thanks a lot, Mr. Nazeck. Your class was supposed to make me feel better about the world, but now even numbers are getting strange!" I'm glad she was smiling as she said it...

*Losing Faith in Humanity*

*Relevance: Losing Faith in Humanity*

# Inconceivable! The Origins of Imaginary Numbers

Lesson 3 of 16

## Objective: SWBAT to explain the reasoning that lead to the invention of the imaginary and complex numbers. SWBAT represent complex numbers in the complex number plane.

*45 minutes*

Using our recent work solving quadratic equations as a springboard, I spend the bulk of this class period directing a Socratic discussion of real and imaginary numbers. My overall aim is to move students from a clear understanding of the real number system to the recognition that there is a need for still more numbers. To generate enthusiasm for the conversation, I emphasize the strangeness of numbers and the concept of infinity. (**MP 2**)

If I've done my job well, my students will walk out of the class understanding clearly what imaginary numbers are, but feeling a little dazed. If I've done my job *really* well, I'll get word from some parents that their kids came home still talking about how math class blew their mind!

To get feel for what this really looks and feels like, please see the sample dialogue of a Socratic discussion of imaginary numbers from my own class and the short video, Imaginary What?!.

*expand content*

Once we've established what the imaginary unit is, why it's "necessary", and how different imaginary numbers arise out of square roots, it's time to talk about complex numbers. Typically, I find that once students have accepted imaginary numbers, it isn't much of a jump for them to combine them with real numbers.

I like to kick of the conversation with this question: "Which number is greater, 5 or (5 + 3*i*)?"

This usually generates a wide variety of responses and allows us to reiterate the point that 3*i* is neither positive nor negative. This means that (5 + 3*i*) is somehow neither greater than, less than, not equal to 5. Bizarre! Using the strangeness of these numbers to generate excitement, I then introduce the complex number plane so that we can "see" how these numbers are all related and make some sense of them. (**MP 2**) Please see my short video, Complex Numbers, for some thoughts on the important points of this conversation.

Once I'm satisfied that the students understand what a complex number is and how to place it in the complex number plane, it's time to move on to the next section of the lesson.

#### Resources

*expand content*

#### Student Practice

*10 min*

The classwork, Complex Numbers, includes problems requiring students to express roots of negative numbers in terms of *i*, problems asking them to plot complex numbers in the complex number plane, and a final problem asking them to graph the first four powers of *i* in the complex number plane and then describe "what seems to be happening to the graph each time the power of *i* is increased by 1."

While I do not plan to make much of it at this point, the final problem sows the seeds for understanding the pattern inherent in the powers of *i*, as well as the rotational property of multiplication by *i*. Advanced students may be encouraged to dig more deeply into these concepts.

Students can watch the excellent video below that explains this rotational property in more detail and in "real world" terms.

If students do not complete all of the problems during the 10 minutes of classwork time, they should complete the remainder for homework tonight. I've included a sample of one typical student's work.

*expand content*

##### Similar Lessons

###### Roots of Polynomial Functions - Day 2 of 2

*Favorites(1)*

*Resources(12)*

Environment: Suburban

###### Review of Complex Numbers

*Favorites(3)*

*Resources(16)*

Environment: Suburban

###### Radical HAMGO

*Favorites(1)*

*Resources(10)*

Environment: Suburban

- UNIT 1: Modeling with Algebra
- UNIT 2: The Complex Number System
- UNIT 3: Cubic Functions
- UNIT 4: Higher-Degree Polynomials
- UNIT 5: Quarter 1 Review & Exam
- UNIT 6: Exponents & Logarithms
- UNIT 7: Rational Functions
- UNIT 8: Radical Functions - It's a sideways Parabola!
- UNIT 9: Trigonometric Functions
- UNIT 10: End of the Year

- LESSON 1: Quadratic Equations, Day 1 of 2
- LESSON 2: Quadratic Equations, Day 2 of 2
- LESSON 3: Inconceivable! The Origins of Imaginary Numbers
- LESSON 4: Complex Solutions to Quadratic Equations
- LESSON 5: Complex Addition
- LESSON 6: The Parallelogram Rule
- LESSON 7: Complex Arithmetic and Vectors
- LESSON 8: Multiplying Complex Numbers, Day 1 of 4
- LESSON 9: Multiplying Complex Numbers, Day 2 of 4
- LESSON 10: Muliplying Complex Numbers, Day 3 of 4
- LESSON 11: Multiplying Complex Numbers, Day 4 of 4
- LESSON 12: Practice & Review
- LESSON 13: Dividing Complex Numbers
- LESSON 14: Quadratic Functions Revisited, Day 1
- LESSON 15: Quadratic Functions Revisited, Day 2
- LESSON 16: Complex Numbers Test