Today is the first of a three day lesson series focusing on engineering practices.
Day 1 starts with an introduction to the field of bioengineering and specifically the use of microfluidic chips.
Standards: W.9-10.2, W.9-10.2d, SL.9-10.1
During Day 2, students will design and fabricate their own microfluidic chip design.
Standards: SL.9-10.1, RST.9-10.3, SP3, SP6, SP8
And on Day 3, students will use their chips to observe laminar flow and reflect upon the engineering design process.
Standards: SL.9-10.1, W.9-10.2d, RST.9-10.3, SP3, SP6, SP8
I spent two summers at the Herr Lab at UC Berkeley learning about the field of bioengineering and the process of making microfluidic chips. My students have enjoyed learning about a field that is new to them and that has the potential of helping people across the globe.
Take a look at my short video for more about this lesson and how it fits into our new NGSS standards highlighting science and engineering practices.
This lesson is based upon the following resource:
Yang, Cheng Wei T., Ouellet, E. and Lagally, Eric T. (University of British Colombia, Canada). Using Inexpensive Jell-O Chips for Hands-On Microfluidics Education. Published July 1, 2010. Feature, Analytical Chemistry, American Chemical Society. Vol. 82, No. 13, pp. 5408-5414.
Enjoy!
Note: This year (2015-2016), I found a great introductory resource set of E-books through our local public television station, KQED. The four Engineering Is... E-Books series focuses on four projects related to bioengineering that include local scientist video interviews, short text readings and background information, and great photos and video clips. I assigned each lab team to do a skit or some other creative role play to summarize and explain their specific project to the class (8 lab groups, two for each E-book, 5 minutes each to present in class). I gave two days in class to prepare and I told student that no slide presentations or videos were allowed, that I wanted them to do a live performance. It was a great introduction to bioengineering and flowed nicely into this introduction to microfluidics. I hope you have as much fun with it as we did!
1. Pass out the engineering design notebook students will be using for the lesson series this week.
2. Ask students to open to the first page and quietly take the engineering survey. Tell students that you will not be grading their answers but that the information will be used to compare to an identical survey given at the end of the unit to help you see what students learned and what they are interested in learning more about.
3. Allow students to work quietly on the survey on their own for ten minutes.
1. Announce that today we will be learning about a field of science known as bioengineering.
2. Ask students to discuss the following prompt in their lab groups:
What do you think of when you hear the word bioengineering?
What comes to mind when you hear the word microfluidics?
3. Use the spokesperson protocol to gather group ideas and create a brief list on the board of their responses.
1. Ask students to open up to the next page in their engineering design notebook that they will be using throughout the lesson series.
2. Have students take notes and ask clarifying questions as needed using this slide presentation to guide the conversation.
1. Write the following prompt on the board:
What information did you find new/most interesting?
What are you curious about when it comes to bioengineering and microfluidic chips?
2. Use the spokesperson protocol to give students an opportunity to respond to and share out their thoughts and impressions about the material presented.
3. Please see my cornerstone video shoot footage to see the protocol in action in our classroom.
On to Day 2!