## Loading...

# The Pythagorean Theorem in Circles

Lesson 5 of 6

## Objective: Students will be able to solve problems involving properties of circles, the Pythagorean Theorem, special right triangles, and area.

#### Warm-Up

*20 min*

At this point in the year, I spiral in prior topics to keep them fresh in students' minds and to help them to discover new applications. In today's warm-up my students:

- Find the circumference of a circle by using several properties of circles alongside the Pythagorean Theorem
- Use the distance formula to prove that a triangle is isosceles
- Solve a problem about the area of a figure and justify their reasoning in general terms.

Like most warm-ups, I give students time to work individually before sharing out their answer in groups. This approach gives me the opportunity to circulate the room to see how individual students are progressing. I am also on the lookout for the strategies that my students are using.

We will debrief today's warm-up by having student volunteers come up to present their work under the document camera. Problem #3 can be particularly interesting for whole-class discussion because students might have reasoned about the area of each figure in different ways. If so, I like to take advantage of this opportunity to work on constructing viable arguments and critiquing each other’s reasoning (**MP3**).

#### Resources

*expand content*

Next I plan to give my students a classwork assignment, which I adapted from Lesson 9.6 of *Discovering Geometry. *The assignment focuses on similar concepts as the warm-up. I want my students to continue to practice integrating properties of circles into problem solving with the Pythagorean Theorem, special right triangles, and area calculation.

I ask my students to work in pairs because it is the kind of practice that would be difficult to do individually. I want students to have a resource available to them if they are stuck. Moreover, when my students work in pairs, I find that there tends to be increased accountability with respect to making sense of and documenting individual work. I find that pairs works better than individual work and larger groups. I think that in a pair my students may take risks more safely than in group of four.

As students begin, I will ask them to call me over then they have completed their work. At this point I will give students the answer key. I'll invite them to correct their work using a different colored pen. After checking their work, I will ask students to take out a piece of notebook paper and to reflect on one or two problems they believe helped them to learn the most and to explain why, which I collect at the end of the lesson.

*expand content*

##### Similar Lessons

###### Re-Calling Pythagoras' Theorem

*Favorites(3)*

*Resources(19)*

Environment: Suburban

###### Solving the Pythagorean Theorem By Diagram Completed

*Favorites(12)*

*Resources(6)*

Environment: Suburban

Environment: Urban

- UNIT 1: Creating Classroom Culture to Develop the Math Practices
- UNIT 2: Introducing Geometry
- UNIT 3: Transformations
- UNIT 4: Discovering and Proving Angle Relationships
- UNIT 5: Constructions
- UNIT 6: Midterm Exam Review
- UNIT 7: Discovering and Proving Triangle Properties
- UNIT 8: Discovering and Proving Polygon Properties
- UNIT 9: Discovering and Proving Circles Properties
- UNIT 10: Geometric Measurement and Dimension
- UNIT 11: The Pythagorean Theorem
- UNIT 12: Triangle Similarity and Trigonometric Ratios
- UNIT 13: Final Exam Review

- LESSON 1: The Pythagorean Theorem
- LESSON 2: Converse of the Pythagorean Theorem and Special Right Triangles Investigation
- LESSON 3: Pythagorean Triples and Special Right Triangles
- LESSON 4: Distance in Geometry
- LESSON 5: The Pythagorean Theorem in Circles
- LESSON 6: Pythagorean Theorem Unit Assessment